

() Preliminary	Specification

(V) Final Specification

Module	15.0" XGA Color TFT-LCD
Model Name	M150XN07 V5(QD15XL1301)

Cu	stom	er		Date		
Аррі	roved	d by	_		_	
			_		_	
Note:	This	Specification	n is	subject	to	change

Checked & Approved by	Date				
CC Chiu	2006/12/29				
Prepared by					
Gina Yu	2006/12/29				
Desktop Display Business Group / AU Optronics corporation					

without notice.

These specification sheets are the proprietary product of AU Optronics ("AUO") and include materials protected under copyright of AUO. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of AUO.

The device listed in these technical literature sheets was designed and manufactured for use in OA equipment.

In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.

Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.

AUO assumes no responsibility for any damage resulting from the use of the device which does not comply with the instructions and the precautions specified in these technical literature sheets.

Contact and consult with a AUO sales representative for any questions about this device.

	Revision History						
REV.	Date	Change Content					
0.1	12/29/06	Specification Initiate					
		l					

1. Application

This specification applies to a color TFT-LCD module, M150XN07 V5.

2. Overview

This module is a color active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). It is composed of a color TFT-LCD panel, driver ICs, control circuit and power supply circuit and a backlight unit. Graphics and texts can be displayed on a $1024 \times 3 \times 768$ dots panel with 16.2M colors by using LVDS (Low Voltage Differential Signaling) to interface and supplying +3.3V DC supply voltage for TFT-LCD panel driving and supply voltage for backlight.

The TFT-LCD panel used for this module has very high aperture ratio. A low-reflection and higher-color-saturation type color filter is also used for this panel. Therefore, high-brightness and high-contrast image, which is suitable for the multimedia use, can be obtained by using this module.

Optimum viewing direction is 6 o'clock.

[Features]

- 1) High aperture panel; high-brightness or low power consumption.
- 2) Brilliant and high contrast image.
- 3) Small footprint and thin shape.
- 4) Light weight.
- 5) Interface 6bit + FRC
- 6) RoHS compliant

3. Mechanical Specifications

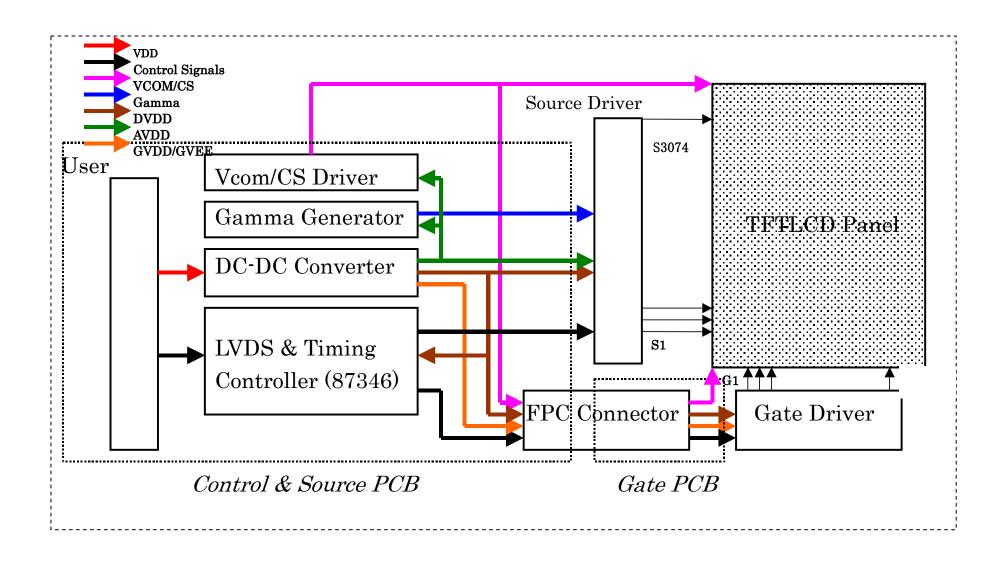
Parameter	Specifications	Unit
Display size	15" Diagonal	inch
Active area	304.1X228.1	mm
Pixel format	1024 (H)×768 (V)	Pixel
	(1 pixel = R+G+B dots)	
Pixel pitch	0.297 (H) × 0.297 (V)	mm
Pixel configuration	R,G,B vertical stripe	
Display mode	Normally white	
Unit outline dimensions (typ.)*1	326.5(W)×253.5 (H)×11(D)	mm
Mass	Max. 950	g
Surface treatment	Anti-glare and hard-coating 3H	

^{*1.}Note: excluding backlight cables. Outline dimensions is shown in this specification

4. Input Terminals

4-1. TFT-LCD panel driving

CN1 (1 channel, LVDS signals – NSC/Ti standard and +3.3V DC power supply)
Using connector: DF14H-20P-1.25H (Hirose)


Interface Cable Pin Assignments

	Cable Fill Assigni	
PIN NO	. SYMBOL	FUNCTION
1	VDD	Power Supply, 3.3 V (typical)
2	VDD	Power Supply, 3.3 V (typical)
3	GND	Ground
4	GND	Ground
5	RxIN0-	LVDS Receiver IN0- Signal
6	RxIN0+	LVDS Receiver IN0+ Signal
7	GND	Ground
8	RxIN1-	LVDS Receiver IN1- Signal
9	RxIN1+	LVDS Receiver IN1+ Signal
10	GND	Ground
11	RxIN2-	LVDS Receiver IN2- Signal
12	RxIN2+	LVDS Receiver IN2+ Signal
13	GND	Ground
14	RxCLKIN-	LVDS CLOCK - Signal
15	RxCLKIN+	LVDS CLOCK + Signal
16	GND	Ground
17	RxIN3-	LVDS Receiver IN3- Signal
18	RxIN3+	LVDS Receiver IN3+ Signal
19	GND	Ground
20	GND	Ground

[Note 1] Relation between LVDS signals and actual data shows below section (4-2).

[Note 2] The shielding case is connected with signal GND.

4-3. Backlight driving

CN2 (connector): BHR-03VS-1(JST)

Mating connector:SM02(8.0) B-BHS-1(JST)

Pin No.	Symbol	Function	
1	V _{HIGH}	Power supply for lamp	
		(High voltage side)	
2		NC	
3	V_{LOW}	Power supply for lamp	
		(Low voltage side)	

5. Absolute Maximum Ratings

5-1 LCD module

Parameter	Symbol	Condition	Ratings	Unit	Remark
Input voltage	VI	Ta=25℃	$-0.3 \sim \text{Vcc+0.3}$	v	[Note1]
+3.3V supply voltage	Vcc	Ta=25℃	0 ~ + 4	v	
Storage temperature	Tstg	_	$-25 \sim +60$	သ	[Note2]
Operating temperature (Ambient)	Тора	_	0 ~ +50	ဗ	

[Note1] LVDS signals

[Note2] Humidity: 95%RH Max. at Ta≤40°C.

Maximum wet-bulb temperature at 39°C or less at Ta>40°C.

No condensation.

6. Electrical Characteristics

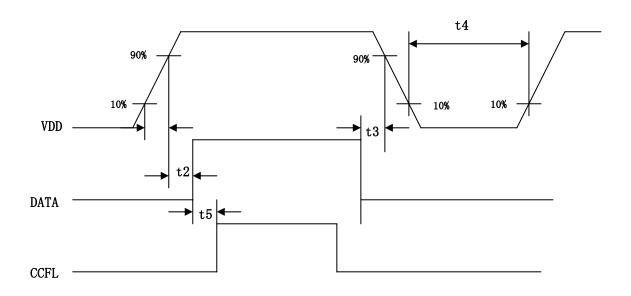
6-1.TFT-LCD panel driving

Ta=25℃

Parameter S		Symbol	Min.	Тур.	Max.	Unit	Remark	
VDD Supply voltage		VDD	+3.0	+3.3	+3.6	V	[Note2]	
Current dissipation		IDD	_	420	800	m A	[Note3]	
Permissive input ripple			V_{RP}	_	_	100	mV p-p	VDD=+3.3V
voltage								
Differ	rential input	High	V _{TH}	-	_	+100	mV	V _{CM} =+1.2V
Thr	reshold voltage	Low	V _{TL}	-100	_	_	mV	【Note1】
Ter	Terminal resistor		R _T	_	100	_	Ω	Differential
							input	
Rus	sh current	•	I _{RUSH}			1.5	Α	Rise time
								470uS

[Note1] V_{CM} : Common mode voltage of LVDS driver.

[Note2]

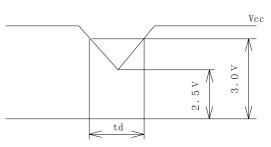

On-off conditions for supply voltage

0<t1≦10 ms

0<t2≦50 ms

0<t3≦50 ms

500 ms≦t4 ; 200 ms≦t5



VDD-dip conditions

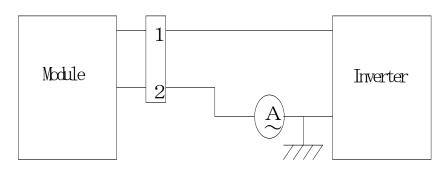
- 1) 2.5 V≦VDD<3.0 V td≦10 ms
- 2) VDD<2.5 V

VDD-dip conditions should also

follow the On-off conditions for supply voltage

[Note3] Typical current situation : 16-gray-bar pattern. VDD=+3.3V

 RGB GS0	RGB GS3	RGB GS7		RGB GS59	RGB GS63
			→		



6-2. Backlight driving

The backlight system is an edge-lighting type with two CCFT (Cold Cathode Fluorescent Tube).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark	
Lamp current range	ΙL	3	8	8.5	mArms	[Note1]	
Lamp voltage	V _L	526	585	644	Vrms		
Lamp power	PL	_	4.68	_	W	[Note2]	
consumption							
Lamp frequency	FL	40		80	kHz	[Note3]	
Kick-off voltage	Vs	_	1	1290	Vrms	Ta=25℃	
		_	_	1400	Vrms	Ta=0°C 【Note4】	
Lamp life time	LL	30000	_	_	hour	[Note5]	

[Note1] Lamp current is measured with current meter for high frequency as shown below.

* 2pin is V_{LOW}

[Note2] Calculated Value for reference (IL × V L) IL=8mA

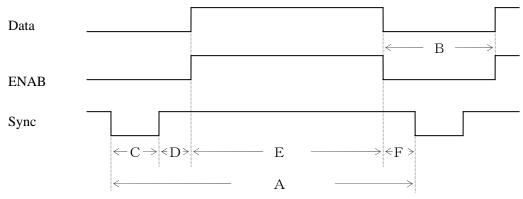
[Note3] Lamp frequency may produce interference with horizontal synchronous frequency, and this may cause beat on the display. Therefore lamp frequency shall be detached as much as possible from the horizontal synchronous frequency and from the harmonics of horizontal synchronous to avoid interference.

[Note4] The voltage above this value should be applied to the lamp for more than 1 second to start-up. Otherwise the lamp may not be turned on.

[Note5] Lamp life time is defined as the time when either ① or ② occurs in the continuous operation under the condition of $Ta = 25^{\circ}C$ and L = 8mArms.

- ① Brightness becomes 50 % of the original value under standard condition.
- ② Kick-off voltage at $Ta = 0^{\circ}C$ exceeds maximum value.

Note) The performance of the backlight, for example life time or brightness, is much influenced by the characteristics of the DC-AC inverter for the lamp. When you design or order the inverter, please make sure that a poor lighting caused by the mismatch of the backlight and the inverter (miss-lighting, flicker, etc.) never occur. When you confirm it, the



module should be operated in the same condition as it is installed in your instrument.

7. Timing characteristics of LCD module input signals

7-1. Timing characteristics

(This is specified at digital outputs of LVDS driver.)

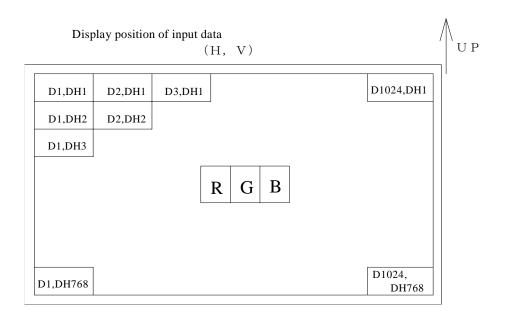
(Vertical)

(FOI tiodi)					
Item (symbol)	Min.	Тур.	Max.	Unit	Remark
Vsync cycle (T _{VA})	_	16.667	_	ms	Negative
	796	806	860	line	
Blanking period(T _{VB})	_	38	_	line	
Sync pulse width (T _{VC})	3	6	_	line	
Back porch (T _{VD})	2	29	_	line	
Sync pulse width + Back porch (T _{VC} +T _{VD})	_	35	_	line	
Active display area (T _{VE})	_	768	_	line	
Front porch (T _{VF})	_	3	_	line	

(Horizontal)

orizoritai)					
Item (symbol)	Min.	Тур.	Max.	Unit	Remark
Hsync cycle (T _{HA})		20.677	_	μ S	Negative
	1260	1344	1366	clock	
Blanking period (T _{HB})	1	320	-	clock	
Sync pulse width (T _{HC})	16	136	_	clock	
Back porch (T _{HD})	28	160	_	clock	
Sync pulse width + Back porch (T _{HC} +T _{HD})	_	296	_	clock	
Active display area (T _{HE})	_	1024	_	clock	
Front porch (T _{HF})	_	24	_	clock	

(Clock)


Item	Min.	Тур.	Max.	Unit	Remark
Frequency	_	65.0	80	MHz	[Note1]

Note) In case of lower frequency, the deterioration of display quality, flicker etc., may occur.

7-2. Input Data Signals and Display Position on the screen

8. Input Signals, Basic Display Colors and Gray Scale of Each Color

	Colors &		- 1-	_		a S				<u>y</u>															
	Gray scale	RO	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	ВО	B1	B2	ВЗ	B4	В5	В6	В7
	Blac k	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Color	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	ប៌	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
y S	Darker	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	û -					ν				<u> </u>							V								
앜	Û					<u>ا</u>								ν —								<u>ر</u>			
Red	Bright	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	₽	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
L	Red Black	0	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gr	DIACK	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	Darker	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scal	û	Ť								_	_														d
e of	Û																								
Gree	Bright	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
een	Û	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gr	Û	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
ay s	Darker	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray Scale	Û																								
e of	.																								
of Blue	Bright n	0	0	0		0	0		0	0	0	0	0	0		0	0			1	1	1	1	1	1
е		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

0 : Low level voltage, 1 : High level voltage

Each basic color can be displayed in 256 gray scales from 8 bit data signals. According to the combination of total 24 bit data signals, the 16.2M-color display can be achieved on the screen.

Ta=25℃, Vcc=+3.3V

Para	Parameter		Condition	Min.	Тур.	Max.	Unit	Remark	
Viewing	Horizontal	θ 21, θ 22	CR>10	50	60	_	Deg.	[Note1,4]	
Angle	Vertical	θ 11		35	45	_	Deg.		
Range		θ 12		45	55	_	Deg.		
Viewing	Horizontal	θ 21, θ 22	CR>5	60	70	_	Deg.		
Angle	Vertical	θ 11		45	55	_	Deg.		
Range		θ 12		55	65	_	Deg.		
Contra	ast ratio	CRn	θ =0 °	300	600	_		[Note2,4]	
Respons	e Rise	τr	θ =0 °	_	3	5	ms	[Note3,4]	
Time	Decay	τ d		_	13	25	ms		
Chromaticity of		Wx		0.283	0.313	0.343		[Note4]	
White		W y		0.299	0.329	0.359			
Chromat	icity of	Rx		0.595	0.625	0.655			
Red		Ry		0.306	0.336	0.366			
Chromat	icity of	Gx		0.269	0.299	0.329			
Green		Gy		0.556	0.586	0.616			
Chromaticity of		Вх		0.117	0.147	0.177			
Blue		Ву		0.079	0.109	0.139			
Luminance of white		Y L 2	Center	200	270	_	Cd/m ²	IL = 8.0mArms [Note4]	
White U	Iniformity	δw		_	1.25	1.33		[Note5]	

^{*} The measurement shall be executed 30 minutes after lighting at rating.

The optical characteristics shall be measured in a dark room or equivalent state with the method shown in Fig.3.

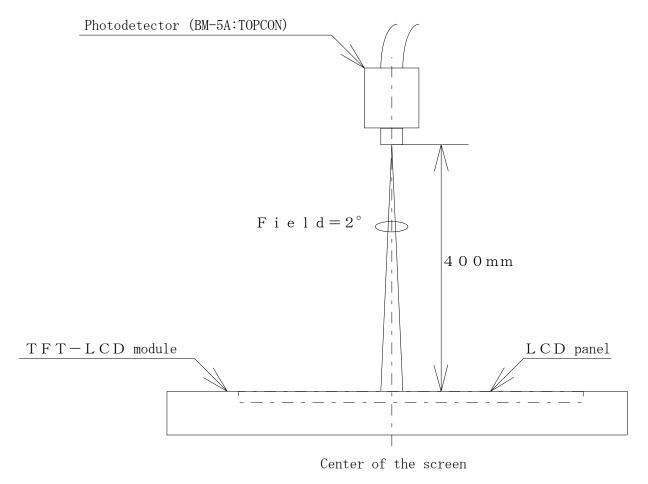
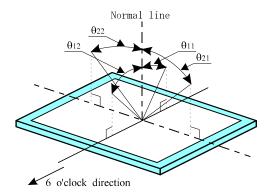



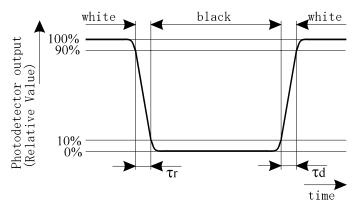
Fig. 3 Optical characteristics measurement method

[Note1] Definitions of viewing angle range:

[Note2] Definition of contrast ratio:

The contrast ratio is defined as the following.

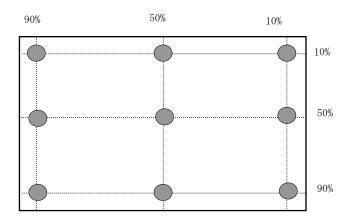
Contrast Ratio (CR)=


Luminance (brightness) with all pixels white

Luminance (brightness) with all pixels black

[Note3] Definition of response time:

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".



[Note4] This shall be measured at center of the screen.

[Note5] Definition of white uniformity:

White uniformity is defined as the

following with 9 measurements

 $\delta_{\rm W} = \frac{{
m Maximum Luminance} \quad ({
m of 9 points})}{{
m Minmum Luminance} \quad ({
m of 9 points})}$

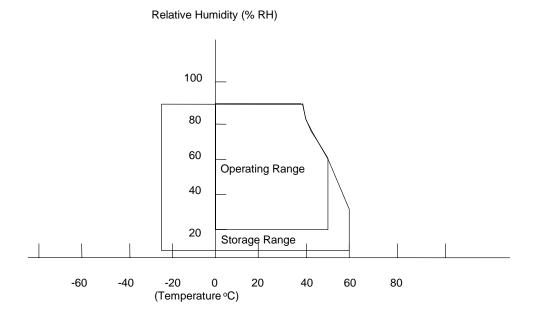
10. Display Quality

The display quality of the color TFT-LCD module shall be in compliance with the Incoming Inspection Standard.

11. Handling Precautions

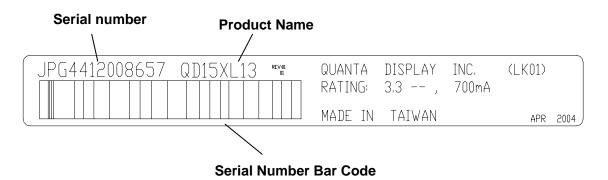
- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- c) Since the front polarizer is easily damaged, pay attention not to scratch it.
- d) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- e) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- f) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- g) Since CMOS LSI is used in this module, take care of static electricity and injure the human earth when handling.
- h) Observe all other precautionary requirements in handling components.
- i) This module has its circuitry PCBs on the rear side and should be handled carefully in order not to be stressed.
- j) Laminated film is attached to the module surface to prevent it from being scratched. Peel the film off slowly just before the use with strict attention to electrostatic charges. Ionized air shall be blown over during the action. Blow off the 'dust' on the polarizer by using an ionized nitrogen gun, etc..
- k) Mounting screw hole can stand torque 1.3~1.5 Kgf-cm.

12. Reliability test items

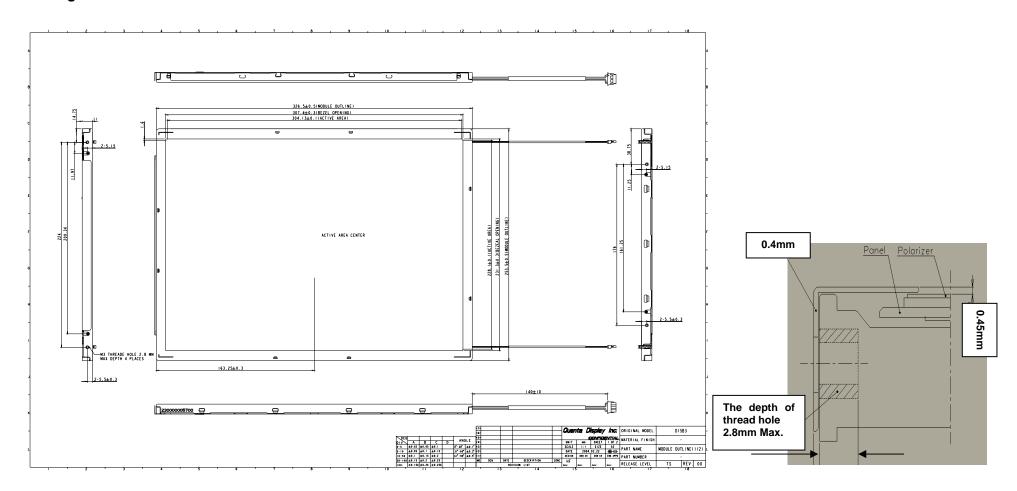

	Test item	Conditions
No.		
1	High temperature storage test	Ta = 60℃ 240h
2	Low temperature storage test	Ta = -25℃ 240h
3	High temperature	Ta = 40℃ ; 90 %RH 240h ; (As remark 3)
	& high humidity operation test	(No condensation)
4	High temperature operation test	Ta = 50℃ 240h
		(The panel temp. must be less than 60℃)
5	Low temperature operation test	Ta = 0℃ 240h
6	Vibration test	Frequency: 10 \sim 500Hz, 1G, Test period : 3 hours
	(non- operating)	(1 hour for each direction of X,Y,Z)
7	Shock test	Max. gravity : 100G
	(non- operating)	Pulse width : 2 ms, Half sine wave
		Direction: $\pm X, \pm Y, \pm Z$
		once for each direction.

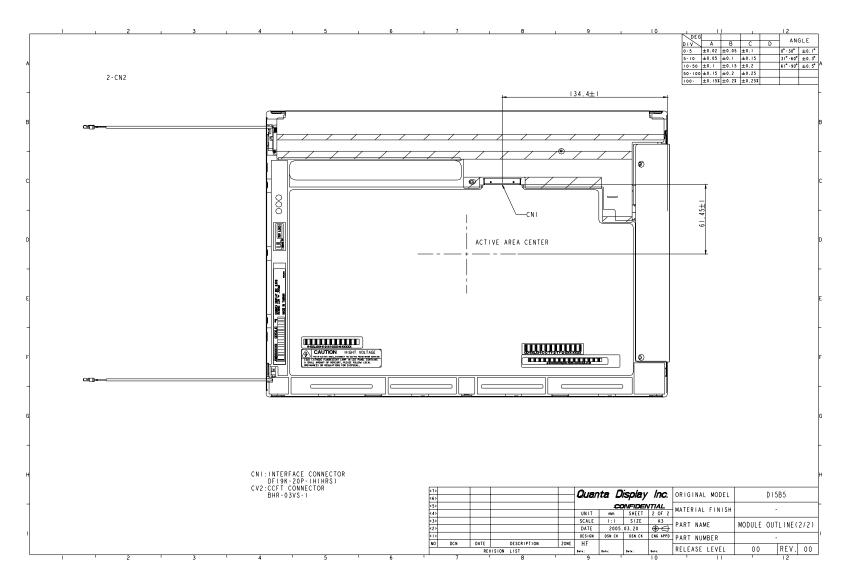
Remark:

- (1) A failure is defined as the appearance of pixel failured on any color layer or the appearance of horizontal or vertical lines, bars etc.
- (2) Low temperature storage "Panel must return to operating temperature range prior to activation."
- (3) Hi temperature / Humidity test


Max. wet-bulb temperature is less than 39°C ; At glass temperature high than 40°C . Temperature and relative humidity range is shown in the figure below.

13. Others


1) Lot No. Label:


- 2) Adjusting volume has been set optimally before shipment, so do not change any adjusted value. If adjusted value is changed, the specification may not be satisfied.
- 3) Disassembling the module can cause permanent damage and should be strictly avoided.
- 4) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
- 5) If any problem occurs in relation to the description of this specification, it shall be resolved through discussion with spirit of cooperation.

14. Drawing

